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Abstract. We discuss a renormalization scheme for relativistic baryon chiral perturbation theory which
provides a simple and consistent power counting for renormalized diagrams. The method involves finite
subtractions of dimensionally regularized diagrams beyond the standard modified minimal subtraction
scheme of chiral perturbation theory to remove contributions violating the power counting. This is achieved
by a suitable renormalization of the parameters of the most general effective Lagrangian. As applications
we discuss the mass of the nucleon, the σ term, and the scalar and electromagnetic form factors.

PACS. 12.39.Fe Chiral Lagrangians – 11.10.Gh Renormalization – 13.40.Gp Electromagnetic form factors

1 Introduction

Starting from Weinberg’s pioneering work [1], the appli-
cation of effective field theory (EFT) to strong interaction
processes has become one of the most important theoreti-
cal tools in the low-energy regime. The basic idea consists
of writing down the most general possible Lagrangian, in-
cluding all terms consistent with assumed symmetry prin-
ciples, and then calculating matrix elements with this La-
grangian within some perturbative scheme [1]. A success-
ful application of this program thus requires two main
ingredients:
(1) a knowledge of the most general effective Lagrangian;
(2) an expansion scheme for observables in terms of a con-

sistent power counting method.
The structure of the most general Lagrangian for both
mesonic and baryonic chiral perturbation theory (ChPT)
has been investigated for almost two decades. The number
of terms in the momentum and quark-mass expansion is
given by

2
︸︷︷︸

O(q2)

+ 10 + 2
︸ ︷︷ ︸

O(q4)

+ 90 + 4 + 23
︸ ︷︷ ︸

O(q6)

+ · · ·

for mesonic ChPT [SU(3)×SU(3)] [2,3] and

2
︸︷︷︸

O(q)

+ 7
︸︷︷︸

O(q2)

+ 23
︸︷︷︸

O(q3)

+ 118
︸︷︷︸

O(q4)

+ · · ·

for baryonic ChPT [SU(2)×SU(2)×U(1)] [4,5,6,7,8].
Moreover, the mesonic sector contains at O(q4) the Wess-
Zumino-Witten action [9,10] taking care of chiral anoma-
lies.
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Once the most general effective Lagrangian is known,
one needs an expansion scheme in order to perform pertur-
bative calculations of physical observables. In this context
one faces the standard difficulties of encountering ultravio-
let divergences when calculating loop diagrams. However,
since one is working with the most general Lagrangian
containing all terms allowed by the symmetries, these in-
finities can, as part of the renormalization program, be
absorbed by a suitable adjustment of the parameters of
the Lagrangian [1,11]. Applying dimensional regulariza-
tion in combination with the modified minimal subtrac-
tion scheme of ChPT, in the mesonic sector a straightfor-
ward correspondence between the loop expansion and the
chiral expansion in terms of momenta and quark masses
at a fixed ratio was set up by Gasser and Leutwyler [2].
The situation in the one-nucleon sector turned out to be
more complicated [4], since the correspondence between
the loop expansion and the chiral expansion seemed to
be lost. One of the findings of [4] was that higher-loop
diagrams can contribute to terms as low as O(q2). A so-
lution to this problem was obtained in the framework of
the heavy-baryon formulation of ChPT [12,13] resulting
in a power counting analogous to the mesonic sector (for
a recent review of ChPT see, e.g., [14]).

Here, we will review some recent efforts to devise a
new renormalization scheme leading to a simple and con-
sistent power counting for the renormalized diagrams of a
manifestly covariant approach. The basic idea consists in
performing additional subtractions of dimensionally regu-
larized diagrams beyond the modified minimal subtraction
scheme employed in [4]. As applications we will discuss
the mass of the nucleon as well as the scalar and electro-
magnetic form factors and compare the method with the
approach of Becher and Leutwyler [15].
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k

Fig. 1. Generic one-loop diagram. The black box denotes some
unspecified vertex structure which is irrelevant for the discus-
sion

2 Dimensional regularization

For the regularization of loop diagrams we will make use of
dimensional regularization [16], because it preserves alge-
braic relations between Green functions (Ward identities).
We will illustrate the method by considering the following
simple example,

I(M2) =
∫

d4k

(2π)4
i

k2 − M2 + i0+ , k2 = k2
0 − k 2, (1)

which shows up in the generic diagram of Fig. 1. Naively
counting the powers of the momenta, the integral is said to
diverge quadratically. In order to regularize (1), we define
the integral for n dimensions (n integer) as

In(M2, µ2) = µ4−n

∫

dnk

(2π)n

i

k2 − M2 + i0+ ,

where the scale µ (’t Hooft parameter) has been intro-
duced so that the integral has the same dimension for
arbitrary n. After a Wick rotation and angular integra-
tion, the analytic continuation for complex n reads (see
Appendix B of [14] for details)

I(M2, µ2, n) =
M2

(4π)2

(

4πµ2

M2

)2− n
2

Γ
(

1 − n

2

)

=
M2

16π2

[

R + ln
(

M2

µ2

)]

+ O(n − 4), (2)

where
R =

2
n − 4

− [ln(4π) + Γ ′(1)] − 1. (3)

The idea of renormalization consists of adjusting the pa-
rameters of the counterterms of the most general effective
Lagrangian so that they cancel the divergences of (multi-)
loop diagrams. In doing so, one still has the freedom of
choosing a suitable renormalization condition. For exam-
ple, in the minimal subtraction scheme (MS) one would
fix the parameters of the counterterm Lagrangian such
that they would precisely absorb the contributions pro-
portional to 2/(n − 4) in (3), while the modified minimal
subtraction scheme (MS) would, in addition, cancel the
term in square brackets. Finally, in the modified minimal
subtraction scheme of ChPT (˜MS) employed in [2], the
seven (bare) coefficients li of the O(q4) Lagrangian are
expressed in terms of renormalized coefficients lri as

li = lri + γi
R

32π2 , (4)

where the γi are fixed numbers.

3 Mesonic chiral perturbation theory

The starting point of mesonic chiral perturbation theory
is a chiral SU(2)L × SU(2)R symmetry of the two-flavor
QCD Lagrangian in the limit of massless u and d quarks.
It is assumed that this symmetry is spontaneously bro-
ken down to its isospin subgroup SU(2)V , i.e., the ground
state has a lower symmetry than the Lagrangian. From
Goldstone’s theorem one expects 6−3 = 3 massless Gold-
stone bosons which interact “weakly” at low energies, and
which are identified with the pions of the “real” world.
The explicit chiral symmetry breaking through the quark
masses is included as a perturbation. According to the pro-
gram of EFT the symmetries of QCD are mapped onto the
most general effective Lagrangian for the interaction of the
Goldstone bosons (pions). The Lagrangian is organized in
a derivative and quark-mass expansion [1,2,3]

Lπ = L2 + L4 + L6 + · · · , (5)

where—in the absence of external fields—the lowest-order
Lagrangian is given by [2]

L2 =
F 2

4
Tr
(

∂µU∂µU†)+
F 2M2

4
Tr(U† + U), (6)

with
U = exp

(

i
τ · π

F

)

a unimodular unitary (2× 2) matrix containing the Gold-
stone boson fields. In (6), F denotes the pion-decay con-
stant in the chiral limit: Fπ = F [1 + O(m̂)] = 92.4 MeV.
Here, we work in the isospin-symmetric limit mu = md =
m̂, and the lowest-order expression for the squared pion
mass is M2 = 2Bm̂, where B is related to the quark con-
densate 〈q̄q〉0 in the chiral limit [2].

Using Weinberg’s power counting scheme [1] one may
analyze the behavior of a given diagram calculated in the
framework of (5) under a linear rescaling of all external
momenta, pi �→ tpi, and a quadratic rescaling of the light
quark masses, mq �→ t2mq, which, in terms of the Gold-
stone boson masses, corresponds to M2 �→ t2M2. The
chiral dimension D of a given diagram with amplitude
M(pi, mq) is defined by

M(tpi, t
2mq) = tDM(pi, mq), (7)

where, in n dimensions,

D = nNL − 2Iπ +
∞
∑

k=1

2kNπ
2k (8)

= 2 + (n − 2)NL +
∞
∑

k=1

2(k − 1)Nπ
2k (9)

≥ 2 in 4 dimensions.

Here, NL is the number of independent loop momenta,
Iπ the number of internal pion lines, and Nπ

2k the num-
ber of vertices originating from L2k. Clearly, for small
enough momenta and masses diagrams with small D, such
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2

Fig. 2. One-loop contribution to the pion self-energy. The
number 2 in the interaction blob refers to L2

as D = 2 or D = 4, should dominate. Of course, the rescal-
ing of (7) must be viewed as a mathematical tool. While
external three-momenta can, to a certain extent, be made
arbitrarily small, the rescaling of the quark masses is a
theoretical instrument only. Note that, for n = 4, loop di-
agrams are always suppressed due to the term 2NL in (9).
In other words, we have a perturbative scheme in terms of
external momenta and masses which are small compared
to some scale [here 1/(4πF )].

As an example, let us consider the contribution of
Fig. 2 to the pion self-energy. According to (8) we expect,
in 4 dimensions, the chiral power

D = 4 · 1 − 2 · 1 + 2 · 1 = 4.

Without going into the details, the explicit result of the
one-loop contribution is given by (see, e.g., [14])

Σloop(p2) =
4p2 − M2

6F 2 I(M2, µ2, n) = O(q4),

where the integral is given in (2) and is infinite as n → 4.
Note that both factors—the fraction and the integral—
each count as O(q2) resulting in O(q4) for the total ex-
pression as anticipated.

For a long time it was believed that performing loop
calculations using the Lagrangian of (6) would make no
sense, because it is not renormalizable (in the tradi-
tional sense). However, as emphasized by Weinberg [1,
11], the cancellation of ultraviolet divergences does not re-
ally depend on renormalizability; as long as one includes
every one of the infinite number of interactions allowed by
symmetries, the so-called non-renormalizable theories are
actually just as renormalizable as renormalizable theories
[11]. The conclusion is that a suitable adjustment of the
parameters of L4 [see (4)] leads to a cancellation of the
one-loop infinities.

4 Baryonic chiral perturbation theory and
renormalization

The extension to processes involving one external nucleon
line was developed by Gasser, Sainio, and Švarc [4]. In
addition to (5) one needs the most general effective La-
grangian of the interaction of Goldstone bosons with nu-
cleons:

LπN = L(1)
πN + L(2)

πN + · · · .

k,i

p pp−k

1 1

Fig. 3. One-loop contribution to the nucleon self-energy. The
number 1 in the interaction blobs refers to L(1)

πN

The lowest-order Lagrangian, expressed in terms of bare
fields and parameters denoted by subscripts 0, reads

L(1)
πN = Ψ̄0

(

iγµ∂µ − m0 − 1
2

◦
gA0

F0
γµγ5τ

a∂µπa
0

)

Ψ0 + · · · ,
(10)

where Ψ0 denotes the (bare) nucleon field with two four-
component Dirac fields describing the proton and the neu-
tron, respectively. After renormalization, m and

◦
gA re-

fer to the chiral limit of the physical nucleon mass and
the axial-vector coupling constant, respectively. While the
mesonic Lagrangian of (5) contains only even powers, the
baryonic Lagrangian involves both even and odd powers
due to the additional spin degree of freedom.

Our goal is to propose a renormalization procedure
generating a power counting for tree-level and loop di-
agrams of the (relativistic) EFT which is analogous to
that given in [17] (for nonrelativistic nucleons). Choosing
a suitable renormalization condition will allow us to ap-
ply the following power counting: a loop integration in n
dimensions counts as qn, pion and fermion propagators
count as q−2 and q−1, respectively, vertices derived from
L2k and L(k)

πN count as q2k and qk, respectively. Here, q
generically denotes a small expansion parameter such as,
e.g., the pion mass. In total this yields for the power D of
a diagram in the one-nucleon sector the standard formula
[17,18]

D = nNL − 2Iπ − IN +
∞
∑

k=1

2kNπ
2k +

∞
∑

k=1

kNN
k (11)

= 1 + (n − 2)NL +
∞
∑

k=1

2(k − 1)Nπ
2k +

∞
∑

k=1

(k − 1)NN
k

(12)
≥ 1 in 4 dimensions,

where, in addition to (8), IN is the number of internal
nucleon lines and NN

k the number of vertices originat-
ing from L(k)

πN . According to (12), one-loop calculations
in the single-nucleon sector should start contributing at
O(qn−1).

As an example, let us consider the one-loop contribu-
tion of Fig. 3 to the nucleon self-energy. According to (11),
the renormalized result should be of order

D = n · 1 − 2 · 1 − 1 · 1 + 1 · 2 = n − 1. (13)
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An explicit calculation yields

Σloop = −3
◦

gA

2
0

4F 2
0

{

(p/ + m)IN + M2(p/ + m)INπ(−p, 0)

− (p2 − m2)p/
2p2 [(p2 − m2 + M2)INπ(−p, 0) + IN − Iπ]

}

,

where the relevant loop integrals are defined as

Iπ = µ4−n

∫

dnk

(2π)n

i

k2 − M2 + i0+ , (14)

IN = µ4−n

∫

dnk

(2π)n

i

k2 − m2 + i0+ , (15)

INπ(−p, 0) = µ4−n

∫

dnk

(2π)n

i

[(k − p)2 − m2 + i0+]

× 1
k2 − M2 + i0+ . (16)

Applying the ˜MS renormalization scheme—indicated by
“r”—one obtains

Σr
loop = −3g2

Ar

4F 2
r

[

− M2

16π2 (p/ + m) + · · ·
]

= O(q2),

i.e., the ˜MS-renormalized result does not produce the de-
sired low-energy behavior of (13). Gasser, Sainio, and
Švarc concluded that loops have a much more compli-
cated low-energy structure if baryons are included. The
appearance of another scale, namely, the mass of the nu-
cleon (which does not vanish in the chiral limit), is one of
the origins for the complications in the baryonic sector [4].
The apparent “mismatch” between the chiral and the loop
expansion has widely been interpreted as the absence of a
systematic power counting in the relativistic formulation.

4.1 Heavy-baryon approach

One possibility of overcoming the problem of power count-
ing was provided by the heavy-baryon formulation of
ChPT [12,13] resulting in a power counting scheme which
follows (11) and (12). The basic idea consists in divid-
ing nucleon momenta into a large piece close to on-shell
kinematics and a soft residual contribution: p = mv + kp,
v2 = 1, v0 ≥ 1 [often vµ = (1, 0, 0, 0)]. The relativistic
nucleon field is expressed in terms of velocity-dependent
fields,

Ψ(x) = e−imv·x(Nv + Hv),

with

Nv = e+imv·x 1
2
(1 + v/)Ψ, Hv = e+imv·x 1

2
(1 − v/)Ψ.

Using the equation of motion for Hv, one can eliminate
Hv and obtain a Lagrangian for Nv which, to lowest order,
reads [13]

̂L(1)
πN = N̄v(iv · D + gASv · u)Nv + O(1/m).

q’

p

q

p+q p’

Fig. 4. s-channel pole diagram of πN scattering

The result of the heavy-baryon reduction is a 1/m ex-
pansion of the Lagrangian similar to a Foldy-Wouthuysen
expansion. Now, power counting works along (11) and (12)
but the approach has its own shortcomings. In higher or-
ders in the chiral expansion, the expressions due to 1/m
corrections of the Lagrangian become increasingly compli-
cated.

Moreover—and what is more important—the ap-
proach generates problems regarding analyticity. This can
easily be illustrated by considering the example of pion-
nucleon scattering [19]. The invariant amplitudes describ-
ing the scattering amplitude develop poles for s = m2

N
and u = m2

N . For example, the singularity due to the nu-
cleon pole in the s channel (see Fig. 4) is understood in
terms of the relativistic propagator

1
(p + q)2 − m2

N

=
1

2p · q + M2
π

, (17)

which, of course, has a pole at 2p · q = −M2
π or, equiva-

lently, s = m2
N . (Analogously, a second pole results from

the u channel at u = m2
N .) Although both poles are not

in the physical region of pion-nucleon scattering, analyt-
icity of the invariant amplitudes requires these poles to
be present in the amplitudes. Let us compare the situa-
tion with a heavy-baryon type of expansion, where, for
simplicity, we choose as the four-velocity pµ = mNvµ,

1
2p · q + M2

π

=
1

2mN

1

v · q + M2
π

2mN

=
1

2mN

1
v · q

(

1 − M2
π

2mNv · q
+ · · ·

)

. (18)

Clearly, to any finite order the heavy-baryon expansion
produces poles at v ·q = 0 instead of a simple pole at v ·q =
−M2

π/(2mN ) and will thus not generate the (nucleon) pole
structures of the invariant amplitudes. Another example
involving loop diagrams will be given in Section 5.

4.2 Infrared regularization

A second solution was offered by Becher and Leutwyler
[15] and is referred to as the so-called infrared regular-
ization. The basic idea can be illustrated using the loop
integral of (16). To that end, we make use of the Feynman
parametrization

1
ab

=
∫ 1

0

dz

[az + b(1 − z)]2
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with a = (k − p)2 − m2 + i0+ and b = k2 − M2 + i0+, in-
terchange the order of integrations, and perform the shift
k → k + zp. The resulting integral over the Feynman pa-
rameter z is then rewritten as

INπ(−p, 0) =
∫ 1

0
dz · · · =

∫ ∞

0
dz · · · −

∫ ∞

1
dz · · · ,

where the first, so-called infrared (singular) integral sat-
isfies the power counting, while the remainder violates
power counting but turns out to be regular and can thus
be absorbed in counterterms. In the one-nucleon sector, it
is straightforward to generalize the method for any one-
loop integral consisting of an arbitrary number of nucleon
and pion propagators [15] (see also [20]).

4.3 Extended on-mass-shell scheme

In the following, we will concentrate on yet another so-
lution which has been motivated in [21] and has been
worked out in detail in [22] (for other approaches, see [23]).
The central idea consists of performing additional sub-
tractions beyond the ˜MS scheme such that renormalized
diagrams satisfy the power counting. Terms violating the
power counting are analytic in small quantities and can
thus be absorbed in a renormalization of counterterms.
In order to illustrate the approach, let us consider as an
example the integral

H(p2, m2; n) =
∫

dnk

(2π)n

i

[(k − p)2 − m2 + i0+][k2 + i0+]
,

where

∆ =
p2 − m2

m2 = O(q)

is a small quantity. We want the (renormalized) integral
to be of order

D = n − 1 − 2 = n − 3.

The result of the integration is of the form (see [22] for
details)

H ∼ F (n, ∆) + ∆n−3G(n, ∆),

where F and G are hypergeometric functions and are ana-
lytic in ∆ for any n. Hence, the part containing G for non-
integer n is proportional to a noninteger power of ∆ and
satisfies the power counting. The part proportional to F
can be obtained by first expanding the integrand in small
quantities and then performing the integration for each
term [24]. It is this part which violates the power counting,
but, since it is analytic in ∆, the power-counting violating
pieces can be absorbed in the counterterms. This obser-
vation suggests the following procedure: expand the inte-
grand in small quantities and subtract those (integrated)
terms whose order is smaller than suggested by the power
counting. In the present case, the subtraction term reads

Hsubtr =
∫

dnk

(2π)n

i

[k2 − 2p · k + i0+][k2 + i0+]

∣

∣

∣

∣

p2=m2

and the renormalized integral is written as

HR = H − Hsubtr = O(qn−1).

Using our EOMS scheme it is also possible to include
(axial) vector mesons explicitly [25]. Moreover, the in-
frared regularization of Becher and Leutwyler can be re-
formulated in a form analogous to the EOMS renormaliza-
tion scheme and can thus be applied straightforwardly to
multi-loop diagrams with an arbitrary number of particles
with arbitrary masses [26] (see also [20]).

5 Applications

As the first application, we discuss the result for the mass
of the nucleon at O(q3). Within the ˜MS scheme of [4] the
result is given by

mN = m − 4cr
1M

2 +
3g2

ArM
2

32π2F 2
r

m (1 + 8cr
1m) − 3g2

ArM
3

32πF 2
r

,

(19)
where r indicates ˜MS-renormalized quantities, and where
we have used the renormalization scale µ = m with m the
SU(2) × SU(2) chiral limit of the nucleon mass (at fixed
ms �= 0). The third term on the r. h. s. of (19) violates
the power counting of (11), because it is proportional to
M2, i.e., O(q2), while it is obtained from the diagram of
Fig. 3 which should generate contributions of O(q3). On
the other hand, the result in the EOMS scheme is given
by [22]

mN = m − 4c1M
2 − 3g2

AM3

32πF 2 + O(M4), (20)

where all parameters are understood to be taken in
the EOMS scheme. Clearly, this expression satisfies the
power counting, because the renormalized loop contribu-
tion of Fig. 3 is of O(M3). The relation between the ˜MS-
renormalized and the EOMS-renormalized coefficients is
given by

cr
1 = c1 +

3mg2
A

128π2F 2 [1 + 8mc1] + · · · .

A full calculation of the nucleon mass at O(q4) yields
[22]

mN =m+k1M
2+k2M

3+k3M
4 ln

(

M

m

)

+k4M
4+O(M5),

(21)
where the coefficients ki are given by

k1 = −4c1, k2 = − 3
◦

gA

2

32πF 2 ,

k3 =
3

32π2F 2



8c1 − c2 − 4c3 −
◦

gA

2

m



 ,

k4 =
3

◦
gA

2

32π2F 2m
(1 + 4c1m) +

3
128π2F 2 c2 +

1
2
α. (22)
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Here, α = −4(8e38 + e115 + e116) is a linear combination
of O(q4) coefficients [8]. In order to obtain an estimate for
the various contributions of (21) to the nucleon mass, we
make use of the set of parameters ci of [27],

c1 = −0.9 m−1
N , c2 = 2.5 m−1

N ,

c3 = −4.2 m−1
N , c4 = 2.3 m−1

N . (23)

These numbers were obtained from a (tree-level) fit to
the πN scattering threshold parameters of [28]. Using the
numerical values

gA = 1.267, Fπ = 92.4 MeV, mN = mp = 938.3 MeV,

Mπ = Mπ+ = 139.6 MeV, (24)

we obtain for the mass of nucleon in the chiral limit (at
fixed ms �= 0):

m = mN − ∆m

= [938.3 − 74.8 + 15.3 + 4.7 + 1.6 − 2.3] MeV
= 882.8 MeV

with ∆m = 55.5 MeV. Here, we have made use of an es-
timate for α obtained from the σ term (see the following
discussion).

Similarly, an analysis of the σ term yields

σ = σ1M
2 + σ2M

3 + σ3M
4 ln

(

M

m

)

+ σ4M
4 + O(M5),

(25)
with

σ1 = −4c1, σ2 = − 9
◦

gA

2

64πF 2 ,

σ3 =
3

16π2F 2



8c1 − c2 − 4c3 −
◦

gA

2

m



 ,

σ4 =
3

8π2F 2





3
◦

gA

2

8m
+ c1(1 + 2

◦
gA

2
) − c3

2



+ α. (26)

We obtain [with α = 0 in (26)]

σ = (74.8 − 22.9 − 9.4 − 2.0) MeV = 40.5 MeV. (27)

The result of (27) has to be compared with the dispersive
analysis σ = (45 ± 8) MeV of [29] which would imply,
neglecting higher-order terms, αM4 ≈ 4.5 MeV. As has
been discussed, e.g., in [15], a fully consistent description
would also require to determine the low-energy coupling
constant c1 from a complete O(q4) calculation of, say, πN
scattering.

The results of (22) and (26) satisfy the constraints as
implied by the application of the Hellmann-Feynman the-
orem to the nucleon mass [2,4]

σ = M2 ∂mN

∂M2 . (28)

A chiral low-energy theorem [30,31] relates the scalar
form factor at t = 2M2

π to the πN scattering amplitude at

0
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Fig. 5. Scalar form factor σ(t) as a function of t at O(q4)

the unphysical point ν = 0, t = 2M2
π (for a recent discus-

sion of the corrections, see [27]). Defining the difference
∆σ = σ(2M2

π) − σ(0), one obtains a similar expansion for
∆σ as for the nucleon mass and the σ term [15]

∆σ = ∆1M
3 + ∆2M

4 ln
(

M

m

)

+ ∆3M
4 + O(M5), (29)

where

∆1 =
3

◦
gA

2

64πF 2 , ∆2 =
1

16π2F 2





3
◦

gA

2

m
+ c2 + 6c3



 ,

∆3 = 8e22 − c1
◦

gA

2

4π2F 2 +
3(π − 2)

◦
gA

2

128π2F 2m
+

3c1(π − 4)
16π2F 2

+
c2(14 − 3π)
192π2F 2 +

3c3

16π2F 2 , (30)

where e22 is an O(q4) coefficient [8]. Using the parameters
and numerical values of (23) and (24), respectively, we
obtain [with e22 = 0 in (30)]

∆σ = (7.6 + 10.2 − 0.9) MeV = 16.9 MeV, (31)

which has to be compared with the dispersive analysis
∆σ = (15.2 ± 0.4) MeV of [29] resulting in the estimate
8e22M

4 ≈ −1.7 MeV.
Next we discuss the scalar form factor which is defined

as

〈N(p′)|m̂[ū(0)u(0) + d̄(0)d(0)]|N(p)〉 = ū(p′)u(p)σ(t).

The numerical results for the real and imaginary parts of
the scalar form factor at O(q4) are shown in Fig. 5 for
the extended on-mass-shell scheme (solid lines) and the
infrared regularization scheme (dashed lines). While the
imaginary parts are identical in both schemes, the differ-
ences in the real parts are practically indistinguishable.
Note that for both calculations σ(0) and ∆σ have been
fitted to the dispersion results of [29]. Figure 6 contains
an enlargement near t ≈ 4M2

π for the results at O(p3)
which clearly displays how the heavy-baryon calculation
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Fig. 6. Real and imaginary parts of the scalar form factor
as a function of t at O(q3) in the vicinity of t = 4M2

π . Solid
lines: EOMS scheme; dashed lines: infrared regularization (IR)
of [15]; dotted lines: HBChPT calculation of [13]. On this scale
the (unphysical) divergence of both real and imaginary parts
of the heavy-baryon result becomes visible

fails to produce the correct analytical behavior. Both real
and imaginary parts diverge as t → 4M2

π .
As the final example, we consider the electromagnetic

form factors of the nucleon which are defined via the ma-
trix element of the electromagnetic current operator as

〈N(pf ) |Jµ(0)|N(pi)〉 =

ū(pf )
[

γµFN
1 (Q2) +

iσµνqν

2mN
FN

2 (Q2)
]

u(pi), N = p, n,

where q = pf − pi is the momentum transfer and Q2 ≡
−q2 = −t ≥ 0. Instead of the Dirac and Pauli form factors
F1 and F2 one commonly uses the electric and magnetic
Sachs form factors GE and GM defined by

GN
E (Q2) = FN

1 (Q2) − Q2

4m2
N

FN
2 (Q2),

GN
M (Q2) = FN

1 (Q2) + FN
2 (Q2).

At Q2 = 0, these form factors are given by the electric
charges and the magnetic moments in units of the charge
and the nuclear magneton, respectively:

Gp
E(0) = 1, Gn

E(0) = 0, Gp
M (0) = 1 + κp = 2.793,

Gn
E(0) = κn = −1.913.

Figure 7 shows the results for the Sachs form factors
at O(q4) in the EOMS scheme (solid lines) [32] and the
infrared regularization (dashed lines) [33]. The description
of Gp

E , Gp
M , and Gn

M turns out to be only marginally better
than that of the O(q3) calculation [32]. For the very-small
Q2 region the improvement is due to additional free pa-
rameters which have been adjusted to the magnetic radii.
As can be seen from Fig. 7, the O(q4) results only pro-
vide a decent description up to Q2 = 0.1 GeV2 and do not
generate sufficient curvature for larger values of Q2. More-
over, the situation for Gn

E seems to be even worse, where
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Fig. 7. The Sachs form factors of the nucleon at O(q4). The
solid and dashed lines refer to the results in the EOMS scheme
[32] and the infrared regularization [33], respectively. The ex-
perimental data for Gp

E , Gn
E , Gp

M , and Gn
M are taken from [34],

[35], [36], and [37], respectively

we found better agreement with the experimental data
for the O(q3) results [32]. We conclude that the perturba-
tion series converges, at best, slowly and that higher-order
contributions must play an important role.

6 Summary

We have discussed renormalization in the framework of
mesonic and baryonic chiral perturbation theory. While
the combination of dimensional regularization and the
modified minimal subtraction scheme (of ChPT) leads to a
straightforward power counting in terms of momenta and
quark masses at a fixed ratio in the mesonic sector, the
situation in the baryonic sector proves to be more com-
plicated. At first sight, the correspondence between the
loop expansion and the chiral expansion seems to be lost.
Solutions to this problem have been given in terms of the
heavy-baryon formulation and, more recently, the infrared
regularization approach.

Here, we have discussed the so-called extended on-
mass-shell renormalization scheme which allows for a sim-
ple and consistent power counting in the single-nucleon
sector of manifestly Lorentz-invariant chiral perturbation
theory. In this scheme a given diagram is assigned a chiral
order D according to (11). After reducing the diagram to
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the sum of dimensionally regularized scalar integrals mul-
tiplied by corresponding Dirac structures, one identifies,
by expanding the integrands as well as the coefficients in
small quantities, those terms which need to be subtracted
in order to produce the renormalized diagram with the
chiral order D determined beforehand. Such subtractions
can be realized in terms of local counterterms in the most
general effective Lagrangian. Our approach may also be
used in an iterative procedure to renormalize higher-order
loop diagrams in agreement with the constraints due to
chiral symmetry. Moreover, the EOMS renormalization
scheme allows for implementing a consistent power count-
ing in baryon chiral perturbation theory when vector (and
axial-vector) mesons are explicitly included.
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